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Abstract

We develop a general framework for computing the adjoint variable to nuclear engineering problems gov-
erned by a set of differential-algebraic equations (DAEs). The nuclear engineering community has a rich
history of developing and applying adjoints for sensitivity calculations; many such formulations, however,
are specific to a certain set of equations, variables, or solution techniques. Any change or addition to the
physics model would require a reformulation of the adjoint problem and substantial difficulties in its soft-
ware implementation. In this work we propose an abstract framework that allows for the modification and
expansion of the governing equations, leverages the existing theory of adjoint formulation for DAEs, and
results in adjoint equations that can be used to efficiently compute sensitivities for parametric uncertainty
quantification. Moreover, as we justify theoretically and demonstrate numerically, the same framework can
be used to estimate global time discretization error.

We first motivate the framework and show that the coupled Bateman and transport equations, which
govern the time-dependent neutronic behavior of a nuclear reactor, may be formulated as a DAE system
with a power constraint. We then use a variational approach to develop the parameter-dependent adjoint
framework and apply existing theory to give formulations for sensitivity and global time discretization error
estimates using the adjoint variable. We apply the framework to two problems: a simple pendulum problem
with known solution, which serves to verify our global error estimation procedure, and a 1D model of a
traveling wave reactor. We then emphasize the utility of the framework by adding heat transfer physics to
the reactor problem and showing that no reformulation of the adjoint framework is required for application
to the new physics. We conclude that the abstraction of the adjoint approach into a general framework will
facilitate multiphysics reactor modeling in large-scale software projects.

Keywords: Uncertainty quantification, Error estimation,, Sensitivity analysis, Adjoint method,
Differential algebraic equation

1. Introduction

The growing demand for accurate, reliable, and efficient results from scientific computing has fueled
an enormous amount of research and advancements in hardware, software, and algorithm technology. As
the capabilities and challenges of computing environments improve and change, modelers must revisit and
update existing methods, especially as multi-scale, multiphysics, and high-dimensional problems become the
norm on the way to improved predictability. Further, the imperative of uncertainty quantification (UQ),
verification and validation (V&V), and sensitivity analysis requires substantial ancillary (and often tailored)
structure in large software projects.
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Abstractions, or generalized computational frameworks, are powerful tools for handling the complexity
of a multiphysics application. An effective abstraction allows for the addition, removal, or interchange of
physics while maintaining a robust yet flexible central programming model. The contribution of this work is
an abstraction for computing adjoints of nuclear engineering (NE) systems governed by differential algebraic
equations (DAEs). We illustrate the utility of this abstraction by leveraging existing DAE theory to compute
sensitivity coefficients, estimate global numerical errors, and couple to new physics without changing the
core programming model.

Our application of interest is the simulation of long-life nuclear reactor designs, specifically those that
depend on a balance between the production and destruction of fissile material to achieve their target
lifetime performance. An accurate model of such a design must properly account for the accumulation of
error, such as discretization and model error, and the effects of uncertainty in physical inputs and numerical
parameters. These considerations are especially important if the end of life behavior is sensitive to nuclide
transmutation at the beginning of life. The size and complexity of these simulations require not only the use
of massively parallel computer architectures but also a sound and flexible computational abstraction that
simplifies the otherwise overwhelming verification tasks. Therefore, the algorithms that handle uncertainty
and error estimation must be sufficiently generic yet must run efficiently at scale, motivating the flexible
adjoint framework described in this paper.

The paper is organized as follows: In the remainder of the introduction, we outline the neutron-nuclide
field equations, techniques for solving them, and application of their adjoint equations. We then show that
the quasi-static solution technique may be formulated as a system of DAEs. In §2, we use a variational
approach to develop the general adjoint system for parameter-dependent DAEs and show that the adjoints
may be used for sensitivity and error estimation. In §3 we illustrate the framework on a simple pendulum
problem that verifies our adjoint use for numerical error estimation. In §4 we apply our adjoint framework
to a simplified traveling wave reactor simulation, and in §5 we show that this same framework is easily
extended to include a new set of physics governing heat transfer. We finish with some concluding remarks
about our adjoint abstraction.

1.1. Introduction of the burnup equations

We are interested in modeling the depletion and transmutation of nuclide densities in a neutron field,
a key calculation for modeling advanced reactor designs that depend on a careful balance between fertile
and fissile species. We develop model in more detail in §4.1; for this introduction it is sufficient to write
the equations in operator form. Consider a column vector of j space and time dependent nuclide densities,
N = 〈N1(r, t), N2(r, t), . . . , Nj(r, t)〉. The time evolution of the densities follows the Bateman equation

∂

∂t
N(r, t) = M

(
ψ(P, t), p

)
N(r, t), (1)

where matrix M accounts for nuclide production mechanisms (e.g., transmutation or fission yield) and
depletion mechanisms (e.g., neutron absorption or radioactive decay), ψ is the neutron flux in space-angle-
energy phase space P , and p is a vector of physical parameters (e.g., decay constants and cross-sections).
The neutron flux obeys the time-dependent transport equation

1

v

∂ψ

∂t
= P

(
N(r, t), p

)
ψ(P, t)− L

(
N(r, t), p

)
ψ(P, t), (2)

with production and loss matrices P and L, respectively.
Equations (1) and (2) constitute the nonlinear, coupled burnup equations and have been the subject of

extensive research and software development for several decades [1, 2, 3]. Deterministic solution schemes
most commonly use a variant of the quasi-static approach, which decouples ψ from N over a small time
interval and makes an assumption for the shape of the flux in time. In early work, the flux was assumed
to be constant over the time step [4, 5]; later work assumed a linear shape with various solution techniques
(see reviews in [6] and [7]). In any case, the fully nonlinear equations are rarely solved together.

The NE literature is rich with the development and application of adjoint theory to compute sensitivity
coefficients for metrics resulting from the solution to the burnup equations. Early work by Williams [8]
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formalized the adjoint equations for the constant flux approximation. This led to numerous extensions
and generalizations, including the adjoint equation for the constant power depletion problem [9] and other
applications [10, 11]. Perhaps most notably, the nuclear power industry makes heavy use of sensitivity
information for fuel cycle optimization (see review in [12]), a problem that requires the sensitivity of a
small number of scalar metrics with respect to a very large number of uncertain inputs. Incidentally, this is
precisely the regime in which adjoint calculations for estimating sensitivities are the most efficient [13].

1.2. Formulation of the differential-algebraic burnup equations

To facilitate the general framework, we propose a reformulation of Eqs. (1) and (2) into a set of differential
algebraic equations. A system of DAEs differs from a system of ODEs in that the equations are not
completely solvable for the derivatives of some subset of the solution vector; instead, this subset satisfies
some derivative-free algebraic constraint. We write a DAE system as

F (ẋ, x, p, t) =

{
ẋ− fd(x, p, t)
−fa(x, p, t)

}
∆
=

{
F d(ẋ, x, p, t)
F a(ẋ, x, p, t)

}
= 0

x(t0) = x0(p)

t ∈ [t0, tf ],

(3)

where x is the solution vector and superscripts d and a denote its differential and algebraic components,
respectively; that is, x = (xd, xa). If fa(·) is uniquely solvable for the algebraic unknowns, xa, the DAE
is said to be index-1 [14]. In this work, we will handle only index-1 DAEs. We note, however, that any
DAE can be reduced by differentiation to an index-1 DAE [14]; therefore, our results can be applied, after
transformation, to fairly general DAEs. We also note that this is not the most general form (fd or fa

could depend on ẋd); however, formulation (3) is the most common in engineering applications. Arguably,
the notation F a is a bit superfluous; nevertheless, we maintain it for a notational ease that will make
subsequent computations easy to follow. The index-1 condition translates into F axa ≡ ∂Fa

∂xa being invertible,

in F aẋ ≡ ∂Fa

∂ẋ ≡ 0, and in F dẋ ≡ ∂Fd

∂ẋ ≡ I.
The burnup equations are suitable for this formulation for the following reason: to account for reactor

power history and operation, depletion codes must add an engineering degree of freedom and external
constraint . These usually take the form of an external absorber and constant power or criticality constraint,
respectively [7, 8, 9]. The resulting approximation is that the neutron flux instantaneously satisfies an
eigenvalue equation with a normalization constraint,

L
(
N(r, t), p

)
ψ(P, t) + A(r, t)ψ(P, t) =

1

keff
P
(
N(r, t), p

)
ψ(P, t),

0 = P0 −
〈
Efψ

TσfN
〉
P
,

where P0 is a target reactor power, Ef is energy release per fission, σf is the microscopic fission cross-
section matrix, 〈·〉P indicates integration over P , and the matrix A(r, t) accounts for engineering control,
such as soluble boron or control rods. We note that the only physically realizable flux shape is that which
corresponds to keff=1, or a critical system [4]; the remainder of our analysis will assume that A(r, t) is
designed to maintain criticality.

When written with the Bateman equation, these algebraic constraints form our DAE system of interest:

∂N

∂t
= M

(
ψ(P, t), p

)
N(r, t),

0 = P
(
N(r, t), p

)
ψ(P, t)− L

(
N(r, t), p

)
ψ(P, t)−A(t)ψ(P, t),

0 = P0 −
〈
Efψ

TσfN
〉
P
.

(4)

The algebraic constraints take the form of an eigenvalue problem and, with the power constraint, uniquely
determine ψ; thus, the system is index-1, and we may leverage the rich theory to develop a general adjoint
framework for sensitivity and error estimation.
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2. Adjoints for parameter-dependent DAE systems

In this section we develop the adjoint equations for computing sensitivities to inputs and for estimating
the global time-discretization error.

2.1. Estimating first-order sensitivity to simulation inputs

Cao, Li, Petzold, and Serban develop the adjoint problem for DAEs up to index-2 in detail in [15].
Here we use a variational approach to produce the form of their result with fully general dependence
on the parameters p. Consider again the forward problem given by Eq. (3), where the initial condition
x0(p) = 〈xd0(p)T , xa0(p)T 〉 must be consistent with fa(x, p, t0). For sensitivity analysis, we are typically
interested in the sensitivity of some metric, I(x(t), p), with respect to the parameters p. The metric may
have a terminal and integrated component:

I(x(t), p) = g
(
x(tf ), p

)
+

∫ tf

t0

L(x, p, t)dt.

Because F (·) = 0, we may introduce the Lagrange multiplier (or adjoint variable) λ and write an adjoined
metric G(·):

G(x, p, t) = g
(
x(tf ), p

)
+

∫ tf

t0

{
L(x, p, t)− λTF (x, ẋ, p, t)

}
dt.

We take its first order sensitivity with respect to p:

dG

dp
=
[
gp + gxxp

]
t=tf

+

∫ tf

t0

{
Lp + Lxxp − λT

[
Fẋẋp + Fxxp + Fp

]}
dt,

where subscripts of functions indicate Jacobians. After substituting the following result from integration by
parts, ∫ tf

t0

λTFẋẋpdt =
[
λTFẋxp

]tf
t0
−
∫ tf

t0

(
λTFẋ

)′
xpdt,

we write the sensitivity equation as

dG

dp
=

[
gp + gxxp−λTFẋxp

]
t=tf

+

[
λTFẋxp

]
t=t0

+

∫ tf

t0

{
Lp − λTFp +

[
Lx − λTFx + (λTFẋ)′

]
xp

}
dt. (5)

The partial derivative xp(t) is expensive to compute or store; thus, to eliminate this term from the integral
term, we let λ(t) satisfy (

λTFẋ
)′

= λTFx − Lx, (6)

which, as we will show, is a DAE for the adjoint variable. Interestingly, this derivation holds irrespective
of the index of the DAE, but ensuring that (6) has a solution requires a separate analysis for the different
index cases.

For the case of index-1, we find it useful to transpose and expand Eq. (6) in terms of its differential and
algebraic components. Noting the block structure of Fẋ, we have[

λd

0

]′
=

[
(F dxd)T (F axd)T

(F dxa)T (F axa)T

] [
λd

λa

]
−
[

(Lxd)T

(Lxa)T

]
.
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The algebraic constraint gives a linear expression for λa,

λa =
[
(F axa)T

]−1[
(Lxa)T − (F dxa)Tλd

]
, (7)

where we have used the fact that for index-1 DAEs, F axa is nonsingular. The term
[
λTFdxxp

]
t=t0

=

(λd)Txdp

∣∣∣
t=t0

in Eq. (5) requires a knowledge of the dependence of the differential variable initial condi-

tion on the parameters, which is typically given explicitly. The first term in Eq. (5) gives a terminal
condition for Eq. (6). We cannot directly eliminate xp by setting λTFẋ = gx, since this is inconsistent with
both Eq. (7) and the algebraic constraint in Eq. (3). Instead we write xap in terms of xdp by computing the
total derivative of F a with p:

dF a

dp
= 0 = F ap + F axxp = F ap + F axdx

d
p + F axaxap ⇒ xap = − [F axa ]

−1 [
F axdx

d
p + F ap

]
,

where we have used again the index-1 property that F axa is invertible. Then by expanding gxxp and λTFẋxp

gxxp =gxdxdp + gxaxap =
[
gxd − gxa [F axa ]

−1
F axd

]
xdp − gxa [F axa ]

−1
F ap

λTFẋxp =(λd)Txdp,

we equate terms multiplying xdp and arrive at the terminal condition

λd(tf ) =
[
(gxd)T − (F axd)T

[
(F axa)T

]−1
(gxa)T

]
t=tf

, (8)

which leaves the following sensitivity equation:

dG

dp
=

[
(λd)Txdp

]
t=t0

+

[
gp − gxa

[
F axa

]−1
F ap

]
t=tf

+

∫ tf

t0

{
Lp − λTFp

}
dt. (9)

Together, Eqs. (6) and (8) constitute the system of differential algebraic equations governing the adjoint
of system (3), and Eq. (9) gives the sensitivity of metric I(·) with respect to the parameters p.

2.2. Using the adjoint to estimate global time-discretization error

In this section we extend the adjoint-based method developed by Cao and Petzold [16] for estimating
the error in a computed metric g(·) of the final time solution x(tf ). The terminal-metric assumption is not
restrictive; one can always add a dummy variable to the differential equations to transform a distributed
metric into a final one (by adding the equation ż = L(x, p, t), and defining I ≡ g(x(tf ), p) + z(tf )). For
ODEs, Cao and Petzold showed that integrating the adjoint against local truncation error estimates provides
an estimate for the global discretization error. For DAEs, we begin by writing the true system governing
the unknowns:

F (ẋ, x, p, t) = 0, x(t0, p) = x0(p). (10)

Time discretization schemes approximate the temporal derivative in Eq. (10), resulting in an error in the
calculation of x(t). The system that is actually solved is

F ( ˙̃x, x̃, p, t) = r1(t) x̃(t0, p) = x0(p) + r2, (11)

where r1(t) is some systematic perturbation (for example, truncation error), and r2 is an error in the initial
condition. We now define the global error e(t) ≡ x(t)− x̃(t) and subtract (11) from (10) to write an exact
DAE system that governs e(t):

F (ẋ, x, p, t)− F ( ˙̃x, x̃, p, t) = −r1(t), e(t0, p) = −r2.
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If we write a first-order expansion of F (ẋ, x, p, t) about x̃, we find the following O
(
||e2||

)
-accurate DAE

system for the error evolution:

Fẋė+ Fxe = −r1(t), e(t0, p) = −r2.

Again, as in the derivation of the adjoint equation, the preceding statement makes no assumption about the
index of the differential equation. Note, however, that well-posedness of this equation might depend on the
index. In this work, we are interested only in index-1 formulations. In this case, it will be useful to write
this system expanded in terms of its differential and algebraic components. Recalling the block structure of
Fẋ, we have

ėd = −F dxde
d − F dxaea − rd1(t)

0 = −F axde
d − F axaea − ra1(t).

(12)

Again, because F axa is nonsingular, we can write the explicit constraint

ea = [F axa ]
−1 [−F axde

d − ra1
]
. (13)

We also linearize g(x(tf ), p) about x̃ to write an O
(
||e2||

)
-accurate expression for the total error in the

scalar terminal metric:

g
(
x(tf ), p

)
− g
(
x̃(tf ), p

)
≈ ∆g

∆
= gxd

(
x̃(tf ), p

)[
xd(tf )− x̃d(tf )

]
+ gxa

(
x̃(tf ), p

)[
xa(tf )− x̃a(tf )

]
= gxded(tf ) + gxaea(tf )

= gxded(tf ) + gxa [F axa ]
−1 [− F axde

d(tf )− ra1(tf )
]

=
[
gxd − gxa [F axa ]

−1
F axd

]
ed(tf )− gxa [F axa ]

−1
ra1(tf ).

To simplify further analysis, we rewrite this estimate in terms of a linear form:

∆g
(
x(tf ), p

)
= lT1 e

d(tf )− lT2 ; l1
∆
=
[
gxd − gxa [F axa ]

−1
F axd

]T
; l2

∆
=
[
−gxa [F axa ]

−1
ra1(tf )

]T
.

In the preceding expression, all the g and F terms are evaluated at (x(tf ), p, t). As a matter of style in the
rest of the section we will drop the arguments of g and F since the values at which they are evaluated will
be clear from the context.

To compute an error estimate of the terminal metric using the preceding equation, we need an estimate
for the global error ed at t = tf . To that end, we proceed with an analysis analogous to that of Cao and
Petzold, as follows. We first perform an index reduction by substituting the algebraic constraint (13) into
the differential components of system (12). The result is an ODE for the error in the differential variables,
ed(t):

ėd = −F dxde
d − F dxa

[
F axa

]−1[− F axde
d − ra1

]
− rd1

=
[
F dxa

[
F axa

]−1
F axd − F dxd

]
ed + F dxa

[
F axa

]−1
ra1 − rd1 , ed(t0, p) = rd2 . (14)

This ODE is an analog to that developed by Cao and Petzold with the exception of additional terms that
account for the algebraic constraint on ea(t). At first glance, integrating this equation would seem to require
another forward integration along the approximated trajectory x̃(t). By a careful analysis, however, one can
obtain an estimate for this error using adjoint differentiation concepts.

To that end, define the resolvent matrix of the error equation, Φ(t), that satisfies

Φ̇ =
[
F dxa

[
F axa

]−1
F axd − F dxd

]
Φ, Φ(0) = I.
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Then e(tf ) =
∫ tf
t0

Φ(tf )Φ−1(s)
[
F dxa

[
F axa

]−1
ra1(s)− rd1(s)

]
ds+ Φ(tf )rd2 , and

lT1 e(tf ) =

∫ tf

t0

lT1 Φ(tf )Φ−1(s)
[
F dxa

[
F axa

]−1
ra1(s)− rd1(s)

]
ds+ lT1 Φ(tf )rd2 .

Now, consider the adjoint equation given by

λ̇ = −
[
F dxa

[
F axa

]−1
F axd − F dxd

]T
λ, λ(tf ) = l1, (15)

the solution to which satisfies λT (s) = lT1 Φ(tf )Φ−1(s) and λT (0) = lT1 Φ(tf ). Thus

lT1 e(tf ) =

∫ tf

t0

λT (s)
[
F dxa

[
F axa

]−1
ra1(s)− rd1(s)

]
ds+ λT (0)rd2 .

Referring back to our linearized expression for ∆g, we now can write our global error estimate in terms
of the adjoint that satisfies Eq. (15):

∆g(x(tf ), p) =

∫ tf

t0

λT (s)
[
F dxa

[
F axa

]−1
ra1(s)− rd1(s)

]
ds+ λT (0)rd2 − gxa [F axa ]

−1
ra1 . (16)

We show that this adjoint, which leads to the error estimate in g(·) is the same variable that solves
Eqs. (6) and (8) to give the sensitivity of g with respect to p. First, we note that the terminal condition

l1 =
[
(gxd)T − (F axd)T

[
(F axa)T

]−1
(gxa)T

]
t=tf

is identical to that given by Eq. (8) in the previous section.

To show that the dynamical equations in (6) and (15) are equivalent, recall that λa = −
[
(F axa)T

]−1
(F dxa)Tλd.

Substituting into the dynamical equation in system (15), which we now denote as the adjoint for the differ-
ential variables, we have

λ̇d = −
[
F dxa

[
F axa

]−1
F axd − F dxd

]T
λd = (F dxd)Tλd − (F axd)T

[
(F axa)T

]−1
(F dxa)Tλd

= (F dxd)Tλd + (F axd)Tλa.

This result, written along with the algebraic equation for λa, is identical to the dynamical equation developed
in the previous section. Thus, we find that the same adjoint variable may be used to compute sensitivities
of and estimate global time discretization errors in a terminal metric of the forward solution.

2.3. Truncation estimates for semi-explicit, index-1 DAEs

The previous section provided a method for estimating the global error in some metric g
(
x(tf )

)
resulting

from the local error r1(t), which is a consequence of the numerical treatment of the problem. For example,
if r1(t) is an estimate of the truncation error incurred at each time-step, the theory gives an estimate for
the global time discretization error in g(·).

A closer inspection of Eq. (11) gives a clearer definition of rd1(t) and ra1(t):(
rd1(t)
ra1(t)

)
=

(
˙̃x− fd(x̃, p, t)
−fa(x̃, p, t)

)
.

From this we see rd1(t) is the error in estimating the time-derivative of the differential variables, and ra1(t)
is the error in solving the algebraic constraints. Along a given differentiable trajectory x̃(t), both residual
terms can be computed by evaluating both the right-hand sides of the preceding equation at times t required
by a quadrature approximation to the integral (16). We can then use Hermite interpolation to obtain a
differentiable trajectory out of the integration knots tn, values xn, and derivatives f(xn, p, t) [16]. This
approach adds a substantial computational burden, however, as it can substantially increase the number of
evaluations of f , the main computational expense of differential integrators.
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While one often has no recourse other than to use such an approach, we propose a more lightweight
approach for the case of Runge-Kutta methods, based on the concept of embedded Runge-Kutta integration
[17]. We demonstrate it on the index-1 semi-explicit case investigated in this work.

The idea of embedded methods is to compute two estimates for the solution at each time step, one of
O(p) and the other O(p + 1). Their difference is an O(p + 1) estimate of the local truncation error and
may be used to guide time-step size for dynamic error control. Here, we also propose to use it for residual
estimation.

We use an s-stage, half-explicit Runge-Kutta method for time step t ∈ [tn−1, tn]:

xdi = xn−1 + h

i−1∑
j=1

aijf
d(xj , p, tj)

0 = fa(xi, p, ti) i = 1 . . . s

xdn = xdn−1 + h

s∑
i=1

bif
d(xi, p, ti)

x̂dn = xdn−1 + h

s∑
i=1

b̂if
d(xi, p, ti)

0 = fa(xn, p, tn),

where the coefficients aij , bi, and b̂i define the stage weights, and x and x̂ are the O(p) and order O(p+ 1)
solution estimate, respectively. The appeal of the embedded method is that the costly evaluations of f
at each stage are carried out only once, and the different order methods are obtained by using different
weights. Note that the half-explicit Runge-Kutta schemes solve for the differential stage vectors explicitly
and require a (possibly nonlinear) solution of the algebraic constraint at each stage. The order of accuracy
of the scheme for index-1 DAEs is the same as for ODEs [18]. Moreover, the use of half-explicit methods
has an additional advantage in our case. We can interpret the xa variables as being solved uniquely for any
evaluation of f from the algebraic constraints given the xd. We can therefore use a time-filling algorithm
(which produces a differentiable solution for all times t at which to evaluate the residuals) that satisfies the
constraints exactly. Thus, we can set ra1(t) = 0.

We note that the difference x̂−x is an estimate of the truncation in the solution, not that in its derivative
as required by rd1(t). The conversion from the former to the latter will depend on p and the expansion that
defines aij and bi, but in general the error estimate in the derivative will be O(p).

Nevertheless, from Runge-Kutta theory [17], we have that the local residual error for the differential
variables satisfies

xdn+1 − xd,n(tn + h) = Lxh
p+1 +O(hp+2); x̂dn+1 − xd,n(tn + h) = L̂xh

p+2 +O(hp+3).

Here xdn+1 is the approximation produced by the order p method at step n+ 1, x̂dn+1 is the approximation
produced by the order p+ 1 method at step n+ 1, and h is the time step, whereas xd,n is the exact solution
of the DAE when started at xdn. Note that Lx and L̂x are vectors of the same dimension as x.

Since the preceding relationship is true for any h, it follows that this relationship also holds for derivatives
with time, while dropping an order in h:

ẋdn+1 − ẋd,n(tn + h) = Lxh
p +O(hp+1); ˙̂xdn+1 − ẋd,n(tn + h) = L̂xh

p+1 +O(hp+2);

Subtracting the two and solving for Lx we obtain

Lx =
1

hp

[
ẋdn+1 − ˙̂xdn+1

]
+O(h).

We can obtain the following expression of the residual on the interval [tn, tn+1):

rd1(t) =
(t− tn)p

hp

[
ẋdn+1 − ˙̂xdn+1.

]
+ (t− tn)pO(h) ≈ (t− tn)p

hp

[
ẋdn+1 − ˙̂xdn+1.

]
(17)
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This residual can now be used in conjunction with the integral (16) to estimate the effect of the numerical
error on a given scalar terminal estimator function, such as g(x(tf ), p).

In Sec. 3 we give details of the implementation for an order 2/3 Runge-Kutta scheme. We note, however,
that more work is needed to obtain residual estimates for other schemes based on this approach when we
do not have a semi-explicit behavior; in that case ra1(t) will not be 0.

We also note an interesting advantage of our approach. One immediate competitor to our estimator
is the “halving” procedure where the same simulation is run with 1/2 of the time step and a Richardson
extrapolation estimator is produced. Such an approach, however, would have substantial difficulties with an
adaptive time-stepping scheme that varies the time step. Both our approach and the Hermite interpolation
approach proposed in [16] have no difficulty dealing with varying time step sizes; indeed all one has to do is
evaluate the integral (16).

2.4. Our adjoint-based uncertainty framework

Based on our analysis, we define the following framework for uncertainty analysis of DAEs.

1. We integrate the DAE (3) forward in time. For the index-1 case we use a semi-explicit Runge-Kutta
approach defined in §2.3.

2. We produce the estimates of the local truncation error using the techniques described in §2.3.
3. We integrate the adjoint equation (6) backwards to produce the adjoint variable.
4. We compute the gradients of the function of interest using the adjoint variable, as described in (9).
5. We use these gradients in a gradient-enhanced uncertainty propagation framework, as described in

[19]. While we do not report results for this part in this work, we have defined in past work a process
for taking the gradient information in a hybrid approach that accelerates uncertainty quantification
but is applicable to nonlinear models (unlike the use of gradients in conjunction with linear models).
Such a process uses the gradient information produced by this work.

6. We use the same adjoint variable with the estimate of the local truncation error described above to
produce an estimate of the numerical error for a metric of interest by evaluating (16).

We note that this framework can be used to obtain estimates of global error even with adaptive methods
(which use local error estimates to adapt the time step), which cannot be done by classical extrapolation
methods. Moreover, the framework can easily support the addition of more physics; all that is needed is
the expansion of the definition of the mapping F in (3). The framework is thus well suited for modern
multiphysics simulation environments. After the application of this framework we obtain estimates of
parametric sensitivity as propagated through our model, as well as estimates of numerical error.

3. Demonstration: The Simple Pendulum

In this section we demonstrate the adjoint framework for sensitivity and global error estimation on a
verification problem with a known solution. The equations that govern a simple pendulum of length L
pivoting about the point (x = 0, y = 0) are

F (ż, z, p, t) =


ẋ− u
u̇− Λx
x2 + y2 − L2

ux+ vy
u2 + v2 − γy + L2Λ

 = 0,
x(t0) = x0(p)
u(t0) = u0(p)

,

where u and v are velocities in the x and y directions, respectively, Λ is a Lagrange multiplier resulting
from an index reduction, and γ is the local gravitational constant. The unknown vector z = 〈zd, za〉T and
parameters vector p are

zd =

[
x
u

]
, za =

 y
v
λ

 , p =

[
L
γ

]

9



Note that this DAE system is semi-explicit index-1, since the algebraic variables can be solved for explicitly
given values of the differential variables. Thus, the modeler need only specify zd(t0) to initialize the system.
The solution for the x-coordinate as a function of time is

x(t) = Lsin (θ(t))

θ(t) = θ0cos

(
2πt

T

)
T = 2π

√
L

γ

(
1 + C1θ

2
0 + C2θ

4
0 + C3θ

6
0 + C4θ

8
0 +O(θ8

0)
)

C1 =
1

16
, C2 =

11

3072
, C3 =

173

737280
, C4 =

22931

1321205760

θ0 = sin−1
(x0

L

)
,

where θ is the deflection of the pendulum, in radians, and T is the period of oscillation. This result may be
considered analytic for θ8

0 ≤ εmach, the machine precision. Analytic results for the velocities, y coordinate,
and derivatives of the unknowns with respect to p follow from the expression for x(t).

We solve these equations using an embedded, half-explicit Runge-Kutta 2-3 scheme. The order-2 scheme
is a midpoint rule, and the order-3 scheme is Simpson’s rule. The extended Butcher tableau is

0 0
1/2 1/2
1 −1 2

order 2 0 1
order 3 1/6 2/3 1/6

.

As described in §2.3, this scheme provides an estimate for the local truncation error, rd1(t), at each time
step.

We define a terminal metric as the x-coordinate of the pendulum at t = tf :

g(x(tf )) = x(tf ).

Then, by Eqs. (6) and (8), our adjoint system is(
FTẋ λ

)′
= FTx λ

λd(tf ) =

[
1
0

]
,

where

Fẋ =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Fx =


0 −1 0 0 0
−Λ 0 0 0 x
2x 0 2y 0 0
u x v y 0
0 2u −γ 2v L2

 .

From Eq. (9), the sensitivity of our metric with respect to p = [L, γ]T is

dg

dp
= −

∫ tf

t0

λTFpdt,
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where

Fp =


0 0
0 0
−2L 0

0 0
2ΛL −y

 .
We compute this integral by appending an unknown gp to the λ vector that satisfies the following ODE:

ġp = λTFp

ġp(tf ) = 0.

This integrates the sensitivity equation to the same order of accuracy as the adjoint solve and prevents the
need for a quadrature rule. After we have solved for the adjoint, we can compute our estimate of the global
time discretization error using Eq. (16) appropriate for this problem:

∆g = −
∫ tf

t0

λT (s)r1(s)ds.

We cannot use the DAE solver to compute this integral, as above, because the integrand is a discontinuous
function in time (r1 = 0 at the beginning of each time step and grows as (∆t/h)2 during the time step).
The integral is estimated by a sum over the time steps

∆g ≈
N∑
i=2

∫ hi

0

[
λ(ti−1) + λ(ti)

2

]T
r1(ti)

(
s

hi

)2

ds =

N∑
i=2

hi

[
λ(ti−1) + λ(ti)

6

]T
r1(ti).

In this expression we allow for the time step to vary, to point out that it is relatively easy to allow for
adaptive time step.

As a numerical example, we solve the pendulum equations with

zd(t0) =

[
1.0
0.0

]
, p =

[
100.0
9.8

]
, t ∈ [0, 120s].

Our solution metric is g = x(tf = 120s). The error in this metric, ∆g, is the difference between the

known solution and the numerical solution. We also have known expressions for dg
dL , and dg

dγ , which we can
compare with the sensitivities estimated via the adjoint solve. We also can compare our estimate for ∆g
resulting from the adjoint solve and local truncation estimates to its known value. Figure 1 gives each of
these estimates as a function of the solver time step.
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Figure 1: Relative error in computed sensitivities and in the estimate of the global time discretization error

As expected from the second-order scheme, the numerical error ∆g decreases as O(h2). Similarly, the
sensitivities resulting from the second-order adjoint solve decrease as O(h2). The adjoint-based estimate
of ∆g is a higher-order error estimate, and we do not expect second-order convergence. We do expect, of
course, that the predictions become more accurate in the limit as h decreases, which we see here. We also
note that an estimate of numerical error within a relative error of 1% is highly encouraging.

4. A Breeding/Depletion Problem

In this section we develop a relatively simple instance of Eqs. (1) and (2), apply our adjoint framework,
and present sensitivity and error estimation results.

4.1. DAE formulation for the burnup equations

Our reactor geometry is a one-dimensional cylinder with radius R, only one neutron energy group, and
axial coordinate z ∈ [0, L]. We model the concentration of only three nuclides: a fissile nuclide (239Pu, N9),
fertile nuclide (238U, N8), and representative fission product (N0). The following set of simplified Bateman
equations governs the nuclide densities

∂N9(z, p, t)

∂t
= φ(z, p, t)

[
σa,8N8(z, p, t)− σa,9N9(z, p, t)

]
∂N8(z, p, t)

∂t
= φ(z, p, t)

[
Γσa,9N9(z, p, t)− σa,8N8(z, p, t)

]
∂N0(z, p, t)

∂t
= φ(z, p, t)

[
2σf,9N9(z, p, t)− σa,0N0(z, p, t)

]
,

where φ ≡ 〈ψ〉4π is the scalar neutron flux, σa and σf are the absorption and fission microscopic cross-
sections, respectively, p is a yet-undefined vector of the physical and numerical parameters required for the
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problem, and Γ is a small positive number to represent the probability of generating a fissile nuclide after a
nonfission absorption in N9.

To model the neutron flux, we integrate Eq. (2) over all angles and energies to obtain the one-group
continuity equation

1

v

∂φ(z, p, t)

∂t
=
[
νΣf (z, p, t)− Σa(z, pt)−D(z, p, t)B2

g

]
φ(z, p, t)− d

dz
J(z, p, t),

where J is the net neutron current, Σf , and Σa are the macroscopic cross-sections, that depend on N9, N8,
and N0, D is the diffusion coefficient, with a modified definition of D = αD/(3Σt), DB

2
g is a buckling term

to account for radial leakage, v is the neutron speed, and ν is the number of neutrons produced per fission..
Our spatial discretization of the Bateman and continuity equation follows a standard cell-centered finite-

difference scheme, described as follows. We generate n equally spaced cells (of width ∆z) in the axial
dimension and integrate over each cell. The result in cell i is

∂N9,i(p, t)

∂t
= φi(p, t)

[
σa,8N8,i(p, t)− σa,9N9,i(p, t)

]
∂N8,i(p, t)

∂t
= φi(p, t)

[
Γσa,N9,i(p, t)− σa,8N8,i(p, t)

]
∂N0,i(p, t)

∂t
= φi(p, t)

[
2σf,9N9,i(p, t)− σa,0N0,i(p, t)

]
∆z

v

∂φi(p, t)

∂t
=
[
νΣf,i(p, t)− Σa,i(p, t)−Di(p, t)B

2
g

]
∆zφi(p, t)− Ji+1/2(p, t) + Ji−1/2(p, t)

where subscript i indicates a cell average. Our definition of the cell-edge current is such that J is conserved
across the cell boundary. The result of applying Fick’s law, J = −D∇φ, and equating half-cell currents on
either side of the interior boundary at zi+1/2 is

Ji+1/2(p, t) = − 2

∆z

DiDi+1

Di +Di+1

(
φi+1 − φi

)
≡ −

Di+1/2

∆z

(
φi+1 − φi

)
.

We use zero re-entrant conditions at the axial boundaries, namely,

J1/2(p, t) = − 2D1

∆z + 4D1
φ1,

Jn+1/2(p, t) =
2Dn

∆z + 4Dn
φn.

The nonlinear, spatially discretized burnup equations can each be written in matrix-vector format as follows:

∂N(p, t)

∂t
= φ(p, t)TK(p)N(p, t), N ∈ R3n (18)

∆z

v

∂φ(p, t)

∂t
= M

(
N(t), p

)
φ(p, t), φ ∈ Rn. (19)

As mentioned in the introduction, an external absorber is usually imposed on a reactor in order to
control power or reactivity. Our representation for this control variable is the addition of a blanket external
absorber with cross-section Σext

a (t) such that the flux shape satisfies the steady state version of Eq. (19).
The result is an algebraic constraint on φ and Σext

a , which takes the form of an eigenproblem:

M
(
N(t), p

)
φi(p, t)− Σext

a φ(p, t) = 0. (20)

Finally, a constant power constraint (φTN9) = P0 is applied to close the system. In summary, our DAE

13



model for the burnup equations is

∂N(p, t)

∂t
= φ(p, t)TK(p)N(p, t)

M
(
N(t), p

)
φ(p, t)− Σext

a φ(p, t) = 0

(φTN9)− P0 = 0

N8,9,0(t0) = Nt0(p).

(21)

In order to simulate the dynamics of a traveling wave reactor, the initial concentration of the material
is such that the power density is concentrated on one axial end of the reactor (the “starter” end). The
region immediately next to the starter end has a higher concentration of fertile material, and the idea is
that leaking neutrons from the starter end will be absorbed and transmuted to fissile nuclides. Over time,
a successful rate of continuous fuel breeding will cause the reaction to travel axially to the other end of the
reactor.

4.2. Solving the forward problem in MATLAB

To solve system (21), we leverage the sophistication and convenience of the time integrators built into
MATLAB, two of which can solve DAEs [20]. The solvers employ dynamic error control to a user-specified
tolerance and output a data structure that can be used to evaluate the solution at any t ∈ [t0, tf ], which
becomes necessary during the subsequent adjoint solve.

Table 1 specifies the geometry and parameters for the forward problem. We choose cross-sections repre-
sentative of the nuclide’s resonance integrals and amplify the diffusion coefficient to simulate the presence
of a moderator and facilitate the breeding process.

Table 1: Geometry and parameters for reactor problem

Parameter(s) Value(s)
L, R 400cm, 150cm

σf,9, σa,9, σt,9 1000b, 1018b, 1026b
σa,8, σt,8 500b, 600b
σa,0, σt,0 20b, 50b

Γ 0.1
(

1− σf,9

σa,9

)
ν 2.2
αD 500

P0/Vreactor 100W

Table 2 specifies the initial conditions for the forward problem. As previously mentioned, the initial
fuel loading of the reactor is such that the power density will initially be concentrated at one axial end
of the reactor. We do not specify the initial flux distribution explicitly, since it follows from the algebraic
constraint in system (21).
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Table 2: Initial conditions for reactor problem

Unknown Initial Value

Fissile concentration
N9(t0)

8.0× 1020 cm−3 0 ≤ z ≤ L

2

6.0× 1020 cm−3 L

2
≤ z ≤ L

Fertile concentration
N8(t0)

6.0× 1020 cm−3 0 ≤ z ≤ L

2

1.5× 1021 cm−3 L

2
≤ z ≤ L

Fission product concentration
N0(t0)

0.0 cm−3 0 ≤ z ≤ L

We run an example problem with 40 spatial cells using the ode23t (a Runge-Kutta 2/3-like scheme)
solver and a relative time-integration tolerance of 10−7. The problem runs until the external absorber
concentration approaches zero, indicating the system can no longer sustain the reaction. In this case, the
reactor lifetime is just under 13 years. Figure 2 shows the trajectory of the unknowns.

For the first five years, the reaction stays relatively stationary, and the system is dominated by leakage
both out of the problem and into the breeding region. The result is a relatively sharp decline in the external
absorber concentration as reactivity is lost due to fuel depletion. After some time, sufficient fissile material
is generated in the cells next to the starter region, and the reaction begins to move axially through the
reactor. Once away from the boundary, neutron loss due to leakage abates, requiring an increase in the
external absorber concentration to maintain criticality. Near the end of the reactor lifetime, the fuel has
depleted substantially, driving the flux magnitude higher (to satisfy the power constraint), and the system
eventually is no longer able to sustain criticality.
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Figure 2: Representative solution for the breed/burn problem (note the differing viewing angle for each
surface plot)
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Reactor analysts are typically interested in a set of figures-of-merit (FOM) and the sensitivity of the
FOMs to the design inputs or physical parameters. We define two such metrics for this reactor: (1) the
inventory of fertile material at tf and (2) the ratio of the neutrons leaked from the system to neutrons used
for the production of fissile material. The equations for these quantities in discrete form are

I1 =

n∑
i=1

πR2∆zN8,i(tf ) (22)

I2 =
1

tf − t0

∫ tf

t0

πR2
(
− J1/2(t) + Jn+1/2(t)

)
+ ∆z

∑n
i=1Di(t)B

2
gφi(t)

πR2∆zσa,8
∑n
i=1 φi(t)N8(t)

. (23)

We will compute the sensitivity of these metrics with respect to the following vector of parameters:

p ≡ 〈σf,9, σa,9, σt,9, σa,8, σt,8, σa,0, σt,0, Γ, ν, αD〉T .

4.3. Solving the adjoint problem in MATLAB

The adjoint satisfies a DAE system with a terminal condition, which we rewrite here along with the
resulting sensitivity equation:(

λTFẋ
)′

= λTFx − Lx
λd(tf ) =

[
(gxd)T − (F axd)T

[
(F axa)T

]−1
(gxa)T

]
t=tf

dG

dp
=

[
(λd)Txdp

]
t=t0

+

[
gp − gxa

[
F axa

]−1
F ap

]
t=tf

+

∫ tf

t0

{
Lp − λTFp

}
dt.

We again allow the built-in solvers in MATLAB to handle the time integration, this time backwards using
the ode23t solver with relative integration tolerance of 10−8. The terminal condition, dynamical equation,
and sensitivity equation each require differentiation of the system F (·) and/or FOM I with respect to the
unknowns x or parameters p. For efficiency, we use hand-coded Jacobians that have been verified against
automatic differentiation results from the INTLAB package [21]. To compute these derivatives, we need the
solution to the forward problem at any t ∈ [t0, tf ]; the data structure output from the forward model allows
for interpolation in t at the same order of accuracy as the initial solve.

We integrate the sensitivity equation simultaneously with the dynamical equation by appending a de-
coupled unknown vector to the λ vector. These unknowns satisfy

ġp = −
{
Lp − λTFp

}
gp(tf ) =

[
gp − gxa

[
F axa

]−1
F ap

]
t=tf

.

This technique gives an integration tolerance consistent with the solve for λ and avoids the need to store and
compute a quadrature rule. We perform an analogous integration during the forward solve for the integral
term in I2.

4.4. First-order sensitivity results

We compute first-order sensitivities of FOM I1 and I2 to the defined parameter vector. We then compare
these results with estimates obtained from divided differences, whereby we perturb one entry in the parameter
vector, recompute the forward problem, and make a linear estimate for the gradient in that direction. The
problem has 100 spatial cells and is run to seven years of reactor lifetime. Tables 3 and 4 summarize the
results for I1 and I2, respectively.
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Table 3: Estimate for
dI1
dp

computed via adjoints, showing close agreement with the result from divided

differences

Parameter Divided Diff. Adjoint Rel. Error
σf,9 1.019e+49 1.020e+49 3.042e-04
σa,9 -9.057e+48 -9.058e+48 5.409e-05
σt,9 3.273e+47 3.271e+47 7.877e-04
σa,8 -2.158e+47 -2.161e+47 1.349e-03
σt,8 3.497e+47 3.493e+47 1.189e-03
σa,0 -1.046e+49 -1.046e+49 1.487e-04
σt,0 2.031e+48 2.032e+48 8.914e-04
Γ 1.576e+28 1.576e+28 1.889e-05
ν -2.534e+27 -2.534e+27 2.071e-04
αD -1.294e+24 -1.294e+24 5.691e-05

Table 4: Estimate for
dI2
dp

computed via adjoints, showing close agreement with the result from divided

differences

Parameter Divided Diff. Adjoint Rel. Error
σf,9 -3.455e+18 -3.458e+18 8.901e-04
σa,9 -1.899e+17 -1.916e+17 9.043e-03
σt,9 1.720e+17 1.720e+17 3.520e-04
σa,8 1.439e+18 1.437e+18 1.138e-03
σt,8 6.209e+16 6.207e+16 2.977e-04
σa,0 -9.391e+18 -9.391e+18 1.144e-06
σt,0 1.472e+18 1.472e+18 1.123e-04
Γ -1.324e-03 -1.322e-03 1.225e-03
ν -2.965e-03 -2.967e-03 7.239e-04
αD -5.744e-07 -5.747e-07 5.062e-04

For both metrics and each of the 10 parameters, the divided difference and adjoint estimate agree to
within at least 1%. The advantage of the adjoint approach is that it takes only two system solves (one forward
and one backward) to compute all dimensions of the gradient, whereas the divided difference approach takes
one forward solve per dimension (10 in this case). Recent work [19] related to gradient-enhanced response
surface modeling shows that the modest cost of computing adjoint-based sensitivities results in increasingly
accurate uncertainty estimates, especially in the case(s) of codes with sparsely sampled and high-dimensional
input spaces.

4.5. Global time-discretization error estimates for the reactor problem

We now give predictions of the global time discretization error in our solution vector. We return to
our Runge-Kutta 2-3 scheme described in the previous section and verify that this solver is producing a
solution that is within reasonable agreement with the MATLAB time-integrator. We also verify that the
adjoint-based sensitivity estimates are in agreement with divided difference estimates and with the MATLAB
sensitivity estimates.
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We redefine our quantity of interest as the fissile nuclide concentration in the first spatial cell after five
years of reactor life. Our goal is to estimate the error in this quantity due to time discretization. Figure 3
gives our estimate of this error as a function of the time-step for a 40-cell problem. We note that our error
prediction decreases as the square of the time step, which we expect of the true error. We also note that
the predicted error relative to the unknown is less than 1% for all time steps considered.
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Figure 3: Predicted time-discretization error in the predicted fissile concentration in cell 1 as a function of
the time step

5. Addition of Heat Transfer Physics

We emphasize that the power of this abstraction is its flexibility. To illustrate this, we add a heat
conduction equation to the system to model the temperature distribution in the reactor. This in effect
modifies our F (·) function but does not change the algebra leading to the equations governing the adjoint
variable or sensitivity estimate. We first describe our heat transfer model and then show the result of its
implementation in our reactor problem.

5.1. Heat transfer model

The general 1D heat conduction equation is

cp(z, t)ρ(z, t)
∂T (z, t)

∂t
= − ∂

∂z

{
Ψ(z, t)

}
+Q(z, t)− Lr(z, t),

where the properties density (ρ) and specific heat (cp) are defined functions of the nuclide densities, Ψ(·) is
the heat flux, Q(z, t) is a heating source term, in this case due to fission, and Lr(z, t) is a term to account
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for heat loss due to radial convection. We again integrate over each cell i (all cells have width ∆z) to obtain
an exact cell balance equation:

∆zcp,i(t)ρi(t)
∂Ti(t)

∂t
= −

[
Ψi+1/2(t)−Ψi−1/2(t)

]
+ ∆zQi(t)−∆zLr,i(t).

Now we invoke Fourier’s law to write Ψi(t) = −ki(t)
∂Ti(t)

∂z
, where k, the thermal conductivity, is also a

function of the local nuclide densities. To enforce continuity of heat flux at interior cell-edges, we temporarily
add an unknown temperature at the cell boundary, write a balance equation for Ψi+1/2 (suppressing time
arguments)

Ψi+1/2 = −ki
Ti+1/2 − Ti

∆z/2
= −ki+1

Ti+1 − Ti+1/2

∆z/2
,

solve for Ti+1/2

Ti+1/2 =
kiTi + ki+1Ti+1

ki + ki+1
,

substitute back into the equation for Ψi+1/2, and manipulate to obtain

Ψi+1/2 = − 2

∆z

kiki+1

ki + ki+1

[
Ti+1 − Ti

]
.

The fission heating term couples the neutronic and heat transfer equations and is written as

Qi(t) = φiN9,iσf,9Ef

where Ef is energy release per fission. We next make a crude approximation for the radial convection term

∆zLr,i(t) = hr
[
Ti(t)− T∞,r

]
,

where hr and T∞,r are the radial heat transfer coefficient and radial ambient temperature, respectively. The
resulting difference equation for an interior cell is

∂Ti(t)

∂t
=

1

cp,iρi

{
− 2

∆z2

kiki+1

ki + ki+1

[
Ti − Ti+1

]
− 2

∆z2

kiki−1

ki + ki−1

[
Ti − Ti−1

]
+Qi −

hr
∆z

[
Ti − T∞,r

]}
. (24)

We model convective heat transfer at the problem boundaries. In cell 1, the boundary flux is

Ψ1/2 = −k1

T1 − T1/2

∆z/2
= −h1

[
T1/2 − T∞,1].

Solving for and eliminating T1/2, we write the boundary flux as

Ψ1/2 = − 2h1k1

h∆z + 2k1

[
T1 − T∞,1

]
.

An analogous result is found for ΨN+1/2, and the left and right boundary cell difference equations are

∂T1(t)

∂t
=

1

cp,1ρ1

{
− 2

∆z2

k1k2

k1 + k2

[
T1 − T2

]
− 2

∆z

h1k1

h1∆z + 2k1

[
T1 − T∞,1

]
+Q1 −

hr
∆z

[
T1 − T∞,r

]}
, (25)
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∂TN (t)

∂t
=

1

cp,NρN

{
− 2

∆z

hNkN
hN∆z + 2kN

[
TN − T∞,N

]
− 2

∆z2

kNkN−1

kN + kN−1

[
TN − TN−1

]
+QN −

hr
∆z

[
TN − T∞,r

]}
. (26)

Finally we will assume a perfect mixture model for the material properties within a cell:

cp,i =

∑
j=8,9,0 cp,jNj,i∑
j=8,9,0Nj,i

ρp,i =

∑
j=8,9,0 ρjNj,i∑
j=8,9,0Nj,i

kp,i =

∑
j=8,9,0 kjNj,i∑
j=8,9,0Nj,i

.

5.2. Forward problem and sensitivity solutions with the addition of heat transfer physics

As previously mentioned, the addition of new physics redefines our F (·) function. In this case, we add
a differential unknown (temperature) to each cell; these unknowns satisfy Eqs. (24)–(26) developed in the
previous section. They are coupled to the neutronics equations via the fission heating term, and their initial
conditions are solved for using a steady-state heat conduction equation consistent with the neutronics initial
conditions.

Table 5 gives numerical values for the material properties and heat transfer parameters used to define
the problem. Figure 4 shows the temperature distribution for the same 13 year simulation using 40 cells
given in Fig. 2. As expected, the result of the forward problem shows that the temperature distribution
moves with the neutron flux distribution through the reactor.

Table 5: Material properties and heat transfer parameters for the conduction model

Parameter(s) Value(s)
ρ9, cp,9, k9 19.82 g/cm3, 0.1485 J/(g-K), 0.0674 W/(cm-K)
ρ8, cp,8, k8 19.10 g/cm3, 0.1162 J/(g-K), 0.2750 W/(cm-K)
ρ0, cp,0, k0 1.930 g/cm3, 0.2352 J/(g-K), 0.3590 W/(cm-K)
h1, T∞,1 0.40 W/(cm2-K), 295.0K
hN , T∞,N 0.40 W/(cm2-K), 295.0K
hR, T∞,R 3.00 W/(cm2-K), 295.0K
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Figure 4: Temperature distribution in simplified traveling wave reactor model

The procedure for solving for the adjoint variables does not change with the addition of the heat transfer
physics. In practice, the automatic differentiation (AD) packages would handle the modified F (·) and I(tf )
functions (in our case, we hand-code derivatives for efficiency but verify against AD packages). As an
example, we append the heat transfer parameters to the p vector,

p ≡ 〈σf,9, σa,9, σt,9, σa,8, σt,8, σa,0, σt,0, Γ, ν, αD, h1, hN , hR, T∞,1, T∞,N , T∞,R〉T ,

and define a heat transfer QOI, the average temperature in the reactor at t = tf :

I3 =
1

n

n∑
i=1

Ti(tf ).

We again solve the system using 100 spatial cells and seven years of simulation time. The sensitivity of
I3 with respect to our new set of parameters is computed via the adjoint method and the divided differences
method. A comparison of the results is given in Table 6. Again, we see strong agreement between the
adjoint and divided differences results, providing verification evidence for our adjoint solution framework.
More important, however, we emphasize that the work required to add new physics was related only to
model modification, not a reformulation of the adjoint equations or the solution technique for either the
forward or reverse integration.
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Table 6: Adjoint-based and divided-difference estimates of
dI3
dp

, showing close agreement

Parameter Divided Diff. Adjoint Rel. Error
σf,9 9.784e+18 9.776e+18 8.567e-04
σa,9 6.373e+19 6.377e+19 5.585e-04
σt,9 -9.109e+18 -9.100e+18 9.806e-04
σa,8 -1.796e+20 -1.797e+20 3.624e-04
σt,8 -6.505e+18 -6.494e+18 1.728e-03
σa,0 2.658e+20 2.671e+20 4.745e-03
σt,0 -7.388e+19 -7.356e+19 4.388e-03
Γ -7.751e-02 -7.387e-02 4.695e-02
ν 8.528e-02 8.523e-02 5.835e-04
αD 2.793e-05 2.794e-05 1.400e-04
h1 -3.135e-02 -3.133e-02 3.878e-04
hN -2.338e-04 -2.135e-04 8.686e-02
hR -4.440e+01 -4.441e+01 3.161e-04
T∞,1 3.623e-04 3.624e-04 5.695e-05
T∞,N 2.755e-04 2.755e-04 7.318e-05
T∞,R 9.994e-01 9.994e-01 1.100e-08

6. Discussion and Conclusions

We have presented a flexible adjoint framework for DAEs in nuclear engineering applications. We are
concerned primarily with index-1 systems, such as those in burnup equations where the neutron flux and
thermal behavior evolve on much faster time scales and can thus be considered as algebraic constraints on
the time scale of interest.

The adjoint calculations can be used for uncertainty propagation in the context of gradient-enhanced
universal kriging or regression, as recently introduced [19, 22]. Their use appears in the context of computing
gradients of metrics of interest with respect to uncertain parameters that have a probability structure. As
a result, statistics of interest can be computed with far fewer samples [19, 22], facilitating efficient design
optimization. Moreover, we derive theoretically a method that uses the same adjoint variable as the gradient
to produce estimates of the time discretization error. This approach needs an estimate of the residual error,
which we provide for the case of embedded Runge-Kutta integrators. As a result, we are now in a position
to present estimates of both uncertainty propagation and approximation errors.

We demonstrate our findings on a simple pendulum example, a DAE for which we know the solution,
and we show that the discretization error estimate is within 1% of the actual error for the whole tested range
of time steps, which we find encouraging. In addition, we verify the adjoint use for derivative calculations
on multiple instances of a traveling-wave reactor. Moreover, the high level of abstraction in our framework
allows for increased flexibility in modeling, a fact that we demonstrate by adding physics to the traveling-
wave reactor and the relatively immediate extension of our calculations to that case.

This work would benefit from extension in several directions to accommodate other challenges in nuclear
engineering applications. A topic of interest for us in the near future is the extension of this framework for
DAEs of higher index and for schemes that do not use a full nonlinear iteration on the constraint, as the
semi-explicit schemes we have investigated here do. Moreover, a topic of practical interest is the derivation of
inexpensive schemes for estimation of the residual error for other DAE indices. In particular, our framework
allows for residual error in the algebraic constraints that may result in more efficient algorithms whose
numerical error can now be estimated by our framework.
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